818 research outputs found

    Relativistic spectroscopy of the extreme NLS1 IRAS13224-3809

    Get PDF
    The narrow line Seyfert 1 (NLS1) IRAS 13224-3809 is the most X-ray variable active galactic nucleus (AGN), exhibiting 0.3-10 keV flux changes of over an order of magnitude within an hour. We report on the results of the 1.5 Ms 2016 XMM-Newton/NuSTAR observing campaign, which revealed the presence of a 0.24c ultra-fast outflow in addition to the well-known strong relativistic reflection. We also summarise other key results of the campaign, such as the first detection of a non-linear RMS-flux relation in an accreting source, correlations between outflow absorption strength/velocity and source flux, and a disconnect between the X-ray and UV emission. Our results are consistent with a scenario where a disk wind is launched close to the black hole, imprinting absorption features into the spectrum and variability.Comment: 6 pages, 7 figures, contributed talk at "Revisiting narrow-line Seyfert 1 galaxies and their place in the Universe" (Padova, April 2018). Accepted for publication in Proceedings of Science, PoS(NLS1-2018)03

    Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

    Full text link
    In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.

    First experimental evidence of one-dimensional plasma modes in superconducting thin wires

    Full text link
    We have studied niobium superconducting thin wires deposited onto a SrTiO3_{3} substrate. By measuring the reflection coefficient of the wires, resonances are observed in the superconducting state in the 130 MHz to 4 GHz range. They are interpreted as standing wave resonances of one-dimensional plasma modes propagating along the superconducting wire. The experimental dispersion law, ω\omega versus qq, presents a linear dependence over the entire wave vector range. The modes are softened as the temperature increases close the superconducting transition temperature. Very good agreement are observed between our data and the dispersion relation predicted by Kulik and Mooij and Sch\"on.Comment: Submitted to Physical review Letter

    Thermal noise properties of two aging materials

    Full text link
    In this lecture we review several aspects of the thermal noise properties in two aging materials: a polymer and a colloidal glass. The measurements have been performed after a quench for the polymer and during the transition from a fluid-like to a solid-like state for the gel. Two kind of noise has been measured: the electrical noise and the mechanical noise. For both materials we have observed that the electric noise is characterized by a strong intermittency, which induces a large violation of the Fluctuation Dissipation Theorem (FDT) during the aging time, and may persist for several hours at low frequency. The statistics of these intermittent signals and their dependance on the quench speed for the polymer or on sample concentration for the gel are studied. The results are in a qualitative agreement with recent models of aging, that predict an intermittent dynamics. For the mechanical noise the results are unclear. In the polymer the mechanical thermal noise is still intermittent whereas for the gel the violation of FDT, if it exists, is extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on ''Jammming, Yielding and Irreversible Deformation in Condensed Matter'', M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli
    corecore